1D-CNN-Transformer for Radar Emitter Identification and Implemented on FPGA

Author:

Gao Xiangang1,Wu Bin1ORCID,Li Peng1,Jing Zehuan1

Affiliation:

1. School of Electronic Engineering, Xidian University, Xi’an 710071, China

Abstract

Deep learning has brought great development to radar emitter identification technology. In addition, specific emitter identification (SEI), as a branch of radar emitter identification, has also benefited from it. However, the complexity of most deep learning algorithms makes it difficult to adapt to the requirements of the low power consumption and high-performance processing of SEI on embedded devices, so this article proposes solutions from the aspects of software and hardware. From the software side, we design a Transformer variant network, lightweight convolutional Transformer (LW-CT) that supports parameter sharing. Then, we cascade convolutional neural networks (CNNs) and the LW-CT to construct a one-dimensional-CNN-Transformer(1D-CNN-Transformer) lightweight neural network model that can capture the long-range dependencies of radar emitter signals and extract signal spatial domain features meanwhile. In terms of hardware, we design a low-power neural network accelerator based on an FPGA to complete the real-time recognition of radar emitter signals. The accelerator not only designs high-efficiency computing engines for the network, but also devises a reconfigurable buffer called “Ping-pong CBUF” and two-level pipeline architecture for the convolution layer for alleviating the bottleneck caused by the off-chip storage access bandwidth. Experimental results show that the algorithm can achieve a high recognition performance of SEI with a low calculation overhead. In addition, the hardware acceleration platform not only perfectly meets the requirements of the radar emitter recognition system for low power consumption and high-performance processing, but also outperforms the accelerators in other papers in terms of the energy efficiency ratio of Transformer layer processing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3