E-Learning Readiness Assessment Using Machine Learning Methods

Author:

Zine Mohamed1ORCID,Harrou Fouzi2ORCID,Terbeche Mohammed1,Bellahcene Mohammed1,Dairi Abdelkader3ORCID,Sun Ying2

Affiliation:

1. LEPPESE Laboratory, Institute of the Economics and Management Sciences, University Centre of Maghnia, PB 600-13300 Al-Zawiya Road, Al-Shuhada District, Maghnia 13300, Algeria

2. Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

3. Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Oran 31000, Algeria

Abstract

Assessing e-learning readiness is crucial for educational institutions to identify areas in their e-learning systems needing improvement and to develop strategies to enhance students’ readiness. This paper presents an effective approach for assessing e-learning readiness by combining the ADKAR model and machine learning-based feature importance identification methods. The motivation behind using machine learning approaches lies in their ability to capture nonlinearity in data and flexibility as data-driven models. This study surveyed faculty members and students in the Economics faculty at Tlemcen University, Algeria, to gather data based on the ADKAR model’s five dimensions: awareness, desire, knowledge, ability, and reinforcement. Correlation analysis revealed a significant relationship between all dimensions. Specifically, the pairwise correlation coefficients between readiness and awareness, desire, knowledge, ability, and reinforcement are 0.5233, 0.5983, 0.6374, 0.6645, and 0.3693, respectively. Two machine learning algorithms, random forest (RF) and decision tree (DT), were used to identify the most important ADKAR factors influencing e-learning readiness. In the results, ability and knowledge were consistently identified as the most significant factors, with scores of ability (0.565, 0.514) and knowledge (0.170, 0.251) using RF and DT algorithms, respectively. Additionally, SHapley Additive exPlanations (SHAP) values were used to explore further the impact of each variable on the final prediction, highlighting ability as the most influential factor. These findings suggest that universities should focus on enhancing students’ abilities and providing them with the necessary knowledge to increase their readiness for e-learning. This study provides valuable insights into the factors influencing university students’ e-learning readiness.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3