Hyperspectral Shortwave Infrared Image Analysis for Detection of Adulterants in Almond Powder with One-Class Classification Method

Author:

Faqeerzada Mohammad Akbar,Lohumi Santosh,Kim GeonwooORCID,Joshi Rahul,Lee Hoonsoo,Kim Moon Sung,Cho Byoung-KwanORCID

Abstract

The widely used techniques for analyzing the quality of powdered food products focus on targeted detection with a low-throughput screening of samples. Owing to potentially significant health threats and large-scale adulterations, food regulatory agencies and industries require rapid and non-destructive analytical techniques for the detection of unexpected compounds present in products. Accordingly, shortwave-infrared hyperspectral imaging (SWIR-HSI) for high throughput authenticity analysis of almond powder was investigated in this study. Two different varieties of almond powder, adulterated with apricot and peanut powder at different concentrations, were imaged using the SWIR-HSI system. A one-class classifier technique, known as data-driven soft independent modeling of class analogy (DD-SIMCA), was used on collected data sets of pure and adulterated samples. A partial least square regression (PLSR) model was further developed to predict adulterant concentrations in almond powder. Classification results from DD-SIMCA yielded 100% sensitivity and 89–100% specificity for different validation sets of adulterated samples. The results obtained from the PLSR analysis yielded a high determination coefficient (R2) and low error values (<1%) for each variety of almond powder adulterated with apricot; however, a relatively higher error rates of 2.5% and 4.4% for the two varieties of almond powder adulterated with peanut powder, which indicates the performance of quantitative analysis model could vary with sample condition, such as variety, originality, etc. PLSR-based concentration mapped images visually characterized the adulterant (apricot) concentration in the almond powder. These results demonstrate that the SWIR-HSI technique combined with the one-class classifier DD-SIMCA can be used effectively for a high-throughput quality screening of almond powder regarding potential adulteration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. Anatomy and Cell Wall Polysaccharides of Almond (Prunus dulcis D. A. Webb) Seeds

2. How to Detect Adulteration of Maltodextrin in Milk ?;Devrani;Food Beverage Process.,2018

3. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration

4. Chinese Figures Show Fivefold Rise in Babies Sick from Contaminated Milk;Branigan,2008

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3