Abstract
A new drug delivery system consisting of clindamycin phosphate entrapped in acid-etched halloysite nanotubes was successfully prepared and characterized. It was then used as an antibacterial component of the multicomponent hydrogel designed as a material for bone regeneration. First, halloysite (HNT) was etched and clindamycin phosphate (CP) was entrapped in both raw and modified nanotubes, resulting in HNT-CP and EHNT-CP systems. They were characterized using SEM, TEM, TGA and FTIR; the entrapment efficiency and release of CP from both systems were also studied. EHNT-CP was then used as an antibacterial component of the two hydrogels composed of alginate, collagen and β-TCP. The hydrogels were prepared using different crosslinking procedures but had the same composition. The morphology, porosity, degradation rate, CP release profile, cytocompatibility, antibacterial activity and ability to induce biomineralization were studied for both materials. The hydrogel obtained by a chemical crosslinking with EDC followed by the physical crosslinking with calcium ions had better properties and was shown to have potential as a bone repair material.
Subject
Polymers and Plastics,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献