Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process

Author:

Lee Minjeong,Yang Minseok,Choi Sangki,Shin Jingyeong,Park ChanhyukORCID,Cho Si-KyungORCID,Kim Young Mo

Abstract

Spent coffee grounds (SCG) are one of the lignocellulosic biomasses that have gained much attention due to their high potential both in valorization and biomethane production. Previous studies have reported single processes that extract either fatty acids/lignin or biogas. In this study, an integrated physicochemical and biological process was investigated, which sequentially recovers lignin, fatty acid methyl esters (FAME) and biogas from the residue of SCG. The determination of optimal conditions for sequential separation was based on central composite design (CCD) and response surface methodology (RSM). Independent variables adopted in this study were reaction temperature (86.1–203.9 °C), concentration of sulfuric acid (0.0–6.4%v/v) and methanol to SCG ratio (1.3–4.7 mL/g). Under determined optimal conditions of 161.0 °C, 3.6% and 4.7 mL/g, lignin and FAME yields were estimated to be 55.5% and 62.4%, respectively. FAME extracted from SCG consisted of 41.7% C16 and 48.16% C18, which makes the extractives appropriate materials to convert into biodiesel. Results from Fourier transform infrared spectroscopy (FT-IR) further support that lignin and FAME extracted from SCG have structures similar to previously reported extractives from other lignocellulosic biomasses. The solid residue remaining after lignin and FAME extraction was anaerobically digested under mesophilic conditions, resulting in a methane yield of 36.0 mL-CH4/g-VSadded. This study is the first to introduce an integrated resource recovery platform capable of valorization of a municipal solid waste stream.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3