Abstract
This paper uses an acoustic emission (AE) test to examine the energy dissipation and liberation of coal and rock fracture due to underground coal excavation. Many dynamic failure events are frequently observed due to underground coal excavation. To establish the quantitative relationship between the dissipated energy and AE energy parameters, the coal and rock fracturing characteristics were clearly observed. A testing method to analyze the stage traits and energy release mechanism from damage to fracture of the unloading coal and rock under uniaxial compressive loading is presented. The research results showed that the relevant mechanical parameter discreteness was too large because the internal structures of the coal and rock were divided into multiple structural units (MSU) by a few main cracks. The AE test was categorized into four stages based on both the axial stress and AE event parameters: initial loading stage, elastic stage, micro-fracturing stage, and post-peak fracturing stage. The coal and rock samples exhibited minimum (maximum) U values of 60.44 J (106.41 J) and 321.19 J (820.87 J), respectively. A theoretical model of the dissipation energy during sample fracturing based on the AE event energy parameters was offered. The U decreased following an increase in ΣEAE-II/ΣEAE.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献