Algorithm for planning shelters in oil and gas energy resource-based cities based on artificial intelligence resilient city model

Author:

Liang Jing,Ge Ming

Abstract

Cities based on oil and gas energy resources are crucial to energy production and economic development, but they also face various disasters and security risks. To ensure the safety and well-being of urban residents during disaster events, the planning of urban shelters is crucial. In this paper, comprehensively considering multiple factors such as disaster risk, population distribution, and convenient transportation, the artificial bee colony algorithm is used to optimize the site selection and capacity planning of shelters. By comprehensively evaluating the disaster resistance capacity of urban refuges, the response speed of residents and other related indicators, the planning algorithm of refuges is continuously optimized to better meet the needs of oil and gas energy resource-based cities. The results of the study showed that the average overall disaster resilience of AI-based urban shelters reached 0.64. When the distance to the shelter was 4 km, the average response speed of residents reached 10.22 min, and other indicators also improved. The research shows that the oil and gas energy urban refuge planning algorithm based on the artificial intelligence elastic city model provides an innovative approach for urban planners and disaster managers. Further research and practice will help promote the application of this algorithm in real cities, improving the resilience and disaster resistance of cities and the safety and security level of residents.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3