Optimised Agrobacterium-Mediated Transformation and Application of Developmental Regulators Improve Regeneration Efficiency in Melons

Author:

Wan Lili1ORCID,Wang Zhuanrong1,Zhang Xuejun23,Zeng Hongxia1,Ren Jian1,Zhang Na1,Sun Yuhong1,Mi Tang1

Affiliation:

1. Institute of Crop, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China

2. Research Center of Hami Melon, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

3. Hainan Sanya Crops Breeding Trial Center, Xinjiang Academy of Agricultural Sciences, Sanya 572019, China

Abstract

Melon (Cucumis melo L.) is a protected crop in China with high economic value. Agrobacterium-mediated genetic transformation is a powerful tool to improve agronomic traits and obtain elite germplasm. However, current transformation protocols in melons are inefficient and highly genotype-dependent. To improve transformation in melon, we tested different infiltration methods for Agrobacterium-mediated transformation. Among these methods, micro-brushing and sonication for 20 s, followed by vacuum infiltration at −1.0 kPa for 90 s, resulted in the strongest green fluorescent protein signal and increased the proportion of infected explants. We transformed melon with developmental regulatory genes AtGRF5, AtPLT5, AtBBM, AtWUS, AtWOX5, and AtWIND1 from Arabidopsis and estimated regeneration frequencies as the number of regenerating shoots/total number of inoculated explants in the selection medium. The overexpression of AtGRF5 and AtPLT5 in melon resulted in transformation efficiencies of 42.3% and 33% in ZHF and 45.6% and 32.9% in Z12, respectively, which were significantly higher than those of the control. AtGRF5 and AtPLT5 expression cassettes were added to CRISPR/Cas9 genome-editing vectors to obtain transgenic phytoene desaturase CmPDS knockout mutants. Using AtGRF5 or AtPLT5, multi-allelic mutations were observed at CmPDS target sites in recalcitrant melon genotypes. This strategy enables genotype-flexible transformation and promotes precise genome modification technologies in melons.

Funder

Hubei Key Research Project of CRISPR Gene-Editing Technology in Fruit Vegetable Crops

Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation

Wuhan applied basic frontier Project

Tianshan Innovation Team Plan Project in The People’s Government of Xinjiang Uygur Autonomous Region of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3