Numerical Evaluation of the Effect of Fuel Blending with CO2 and H2 on the Very Early Corona-Discharge Behavior in Spark Ignited Engines

Author:

Mariani Valerio,La Civita GiorgioORCID,Pulga Leonardo,Ugolini Edoardo,Ghedini EmanueleORCID,Falfari StefaniaORCID,Cazzoli GiulioORCID,Bianchi Gian Marco,Forte Claudio

Abstract

Reducing green-house gases emission from light-duty vehicles is compulsory in order to slow down the climate change. The application of High Frequency Ignition systems based on the Corona discharge effect has shown the potential to extend the dilution limit of engine operating conditions promoting lower temperatures and faster combustion events, thus, higher thermal and indicating efficiency. Furthermore, predicting the behavior of Corona ignition devices against new sustainable fuel blends, including renewable hydrogen and biogas, is crucial in order to deal with the short-intermediate term fleet electric transition. The numerical evaluation of Corona-induced discharge radius and radical species under those conditions can be helpful in order to capture local effects that could be reached only with complex and expensive optical investigations. Using an extended version of the Corona one-dimensional code previously published by the present authors, the simulation of pure methane and different methane–hydrogen blends, and biogas–hydrogen blends mixed with air was performed. Each mixture was simulated both for 10% recirculated exhaust gas dilution and for its corresponding dilute upper limit, which was estimated by means of chemical kinetics simulations integrated with a custom misfire detection criterion.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3