Hydrogen Application as a Fuel in Internal Combustion Engines
Author:
Falfari Stefania1ORCID, Cazzoli Giulio1ORCID, Mariani Valerio1, Bianchi Gian1ORCID
Affiliation:
1. Department of Industrial Engineering (DIN), University of Bologna, 40136 Bologna, Italy
Abstract
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability, duration and specific power, and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical, chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon, carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate, which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air–fuel ratio, hydrogen-fueled engines exhibit abnormal combustions (backfire, pre-ignition, detonation), the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen–air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion, 3D CFD simulations can be of great help. It is necessary to model the injection process correctly, and then the formation of the mixture, and therefore, the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore, correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen–air mixtures and the autoignition time. In the literature, experimental data are scarce on air–hydrogen mixtures, particularly for engine-type conditions, because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio, increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work, the authors briefly describe the research path and the main challenges listed above.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference50 articles.
1. Hydrogen as a spark ignition engine fuel;Karim;Int. J. Hydrogen Energy,2003 2. Hydrogen as a Spark Ignition Engine Fuel Technical Review;Srinivasan;Int. J. Mech. Mechatron. Eng. IJMME-IJENS,2014 3. Wallner, T. (2011). Efficiency and Emissions Potential of Hydrogen Internal Combustion Engine Vehicles, SAE International. SAE Technical Paper. 4. Bradley, D., Cavaliere, A., De Joannon, M., Dunn-Rankin, D., Evans, R.L., Keller, J., Levinsky, H., McDonell, V., Miyasato, M.M., and Pham, T.K. (2022, December 28). Lean Combustion—Technology and Control, AP. ed. Derek Dunn-Rankin. Available online: https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/ADVANCED%20ENGINE%20TECHNOLOGY%20AND%20PERFORMANCE/epdf.pub_lean-combustion-technology-andcontrol.pdf. 5. Temperature and air–fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture;Ceviz;Energy Convers. Manag.,2005
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|