Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines

Author:

Piqueras PedroORCID,Morena Joaquín De laORCID,Sanchis Enrique José,Pitarch Rafael

Abstract

Exhaust gas recirculation is one of the technologies that can be used to improve the efficiency of spark-ignition engines. However, apart from fuel consumption reduction, this technology has a significant impact on exhaust gaseous emissions, inducing a significant reduction in nitrogen oxides and an increase in unburned hydrocarbons and carbon monoxide, which can affect operation of the aftertreatment system. In order to evaluate these effects, data extracted from design of experiments done on a multi-cylinder 1.3 L turbocharged spark-ignition engine with variable valve timing and low-pressure exhaust gas recirculation (EGR) are used. The test campaign covers the area of interest for the engine to be used in new-generation hybrid electric platforms. In general, external EGR provides an approximately linear decrease of nitrogen oxides and deterioration of unburned hydrocarbon emissions due to thermal and flame quenching effects. At low load, the impact on emissions is directly linked to actuation of the variable valve timing system due to the interaction of EGR with internal residuals. For the same external EGR rate, running with high valve overlap increases the amount of internal residuals trapped inside the cylinder, slowing down combustion and increasing Unburnt hydrocarbon (HC) emissions. However, low valve overlap (i.e., low internal residuals) operation implies a decrease in oxygen concentration in the exhaust line for the same air–fuel ratio inside the cylinders. At high load, interaction with the variable valve timing system is reduced, and general trends of HC increase and of oxygen and carbon monoxide decrease appear as EGR is introduced. Finally, a simple stoichiometric model evaluates the potential performance of a catalyst targeted for EGR operation. The results highlight that the decrease of nitrogen oxides and oxygen availability together with the increase of unburned hydrocarbons results in a huge reduction of the margin in oxygen availability to achieve a complete oxidation from a theoretical perspective. This implies the need to rely on the oxygen storage capability of the catalyst or the possibility to control at slightly lean conditions, taking advantage of the nitrogen oxide reduction at engine-out with EGR.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3