Investigating Metal Solidification with X-ray Imaging

Author:

Feng ShikangORCID,Han InsungORCID,Lui Andrew,Vincent Robin,Ring Gideon,Grant Patrick S.ORCID,Liotti EnzoORCID

Abstract

In the last two decades, X-ray imaging techniques have been used increasingly to study metal solidification in real-time as, thanks to advances in X-ray sources (synchrotron and laboratory-based) and detector technology, images can now be obtained with spatio-temporal resolutions sufficient to record key phenomena and extract quantitative information, primarily relating to crystal growth. This paper presents an overview of the research conducted at the University of Oxford over the last 6 years as a partner in the UK’s Future Liquid Metal Engineering (LiME) Manufacturing Hub. The focus is on in situ X-ray radiography to investigate the solidification of Al alloys, including the formation of primary α-Al crystals, and the formation and growth of secondary intermetallic phases. Technologically, the thrust is to understand how to control as-cast phases, structures and element distributions, particularly elements associated with recycling, as a means to facilitate greater recirculation of aluminium alloys. We first present studies on refinement of primary α-Al, including extrinsic grain refinement using inoculation and intrinsic refinement based on dendrite fragmentation. Second, we describe studies on intermetallic phase formation and growth, because intermetallic fraction, morphology and distribution are frequently a limiting factor of alloy mechanical properties and recyclability. Then we present some of the latest progress in studying liquid flow during solidification and associated hot tear formation. Finally, future research directions are described.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference68 articles.

1. Grain Refinement of Aluminium Alloys by Inoculation

2. Grain refinement of alloys by inoculation of melts

3. The recycling of standard quality wrought aluminum alloys from low-grade contaminated scrap

4. Challenges and advantages of recycling wrought aluminium alloys from lower grades of metallurgically clean scrap;Kevorkijan;Mater. Tehnol.,2013

5. Mechanism of grain refinement in aluminium

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3