A Review of Large-Scale Simulations of Microstructural Evolution during Alloy Solidification

Author:

Cusato Nicholas1,Nabavizadeh Seyed Amin2ORCID,Eshraghi Mohsen1ORCID

Affiliation:

1. Department of Mechanical Engineering, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA

2. Department of Mechanical Engineering, The University of Akron, Auburn Science and Engineering Center 101, Akron, OH 44325, USA

Abstract

During the past two decades, researchers have shown interest in large-scale simulations to analyze alloy solidification. Advances in in situ X-ray observations of the microstructural evolution of dendrites have shown defects that can be very costly for manufacturers. These simulations provide the basis for understanding applied meso-/macro-scale phenomena with microscale details using various numerical schemes to simulate the morphology and solve for transport phenomena. Methods for simulating methodologies include cellular automaton, phase field, direct interface tracking, level set, dendritic needle networks, and Monte Carlo while finite element, finite difference, finite volume, and lattice Boltzmann methods are commonly used to solve for transport phenomena. In this paper, these methodologies are explored in detail with respect to simulating the dendritic microstructure evolution and other solidification-related features. The current research, from innovations in algorithms for scaling to parallel processing details, is presented with a focus on understanding complex real-world phenomena. Topics include large-scale simulations of features with and without convection, columnar to equiaxed transition, dendrite interactions, competitive growth, microsegregation, permeability, and applications such as additive manufacturing. This review provides the framework and methodologies for achieving scalability while highlighting the areas of focus that need more attention.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3