Nucleation Work on Curved Substrates

Author:

Kožíšek Zdeněk1ORCID,Král Robert1ORCID,Zemenová Petra1

Affiliation:

1. FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha, Czech Republic

Abstract

Nucleation is the initial phase transition process when nuclei of a new phase form within an undercooled or supersaturated parent phase under appropriate conditions. Nucleation most often occurs through a heterogeneous process on active centers on which the probability of nucleus formation is high. In general, the origin of active centers may be difficult to distinguish. In this work, we consider the formation of crystalline nuclei in a melt on various curved substrates. Knowledge of excess free energy plays a key role in understanding the process of formation of clusters and it is not easy to express this quantity in a considered system. Excess free energy is often approximated within the framework of capillarity approximation based on interfacial energy, which depends on interatomic interactions near the interface, as well as the misfit between melts, surface roughness, temperature, composition, etc., near the phase interface. The formation of nuclei requires overcoming a certain energy (nucleation) barrier that is a consequence of balancing the volume and the interfacial free energy. Knowing the nucleation barrier (W) is crucial for understanding this process, as nuclei predetermine the physical properties of a newly formed phase. W is typically expressed as a function of the nucleus radius; however, in nucleation kinetics, one needs to determine (W) as a function of the number of molecules forming the nucleus. We analyze nucleation work on various substrates (flat, convex, and concave) for crystallization from an aluminum melt to show that the formation of nuclei is the most probable on concave substrates. An analytical expression for W can be easily applied to other systems under consideration. We show that under the same conditions, the critical radius of nuclei is identical for various substrate, in contrast with the critical number of molecules forming a nucleus.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3