Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method

Author:

Liu TianORCID,Jin Huaan,Li Ainong,Fang HongliangORCID,Wei Dandan,Xie Xinyao,Nan Xi

Abstract

A high-quality leaf-area index (LAI) is important for land surface process modeling and vegetation growth monitoring. Although multiple satellite LAI products have been generated, they usually show spatio-temporal discontinuities and are sometimes inconsistent with vegetation growth patterns. A deep-learning model was proposed to retrieve time-series LAIs from multiple satellite data in this paper. The fusion of three global LAI products (i.e., VIIRS, GLASS, and MODIS LAI) was first carried out through a double logistic function (DLF). Then, the DLF LAI, together with MODIS reflectance (MOD09A1) data, served as the training samples of the deep-learning long short-term memory (LSTM) model for the sequential LAI estimations. In addition, the LSTM models trained by a single LAI product were considered as indirect references for the further evaluation of our proposed approach. The validation results showed that our proposed LSTMfusion LAI provided the best performance (R2 = 0.83, RMSE = 0.82) when compared to LSTMGLASS (R2 = 0.79, RMSE = 0.93), LSTMMODIS (R2 = 0.78, RMSE = 1.25), LSTMVIIRS (R2 = 0.70, RMSE = 0.94), GLASS (R2 = 0.68, RMSE = 1.05), MODIS (R2 = 0.26, RMSE = 1.75), VIIRS (R2 = 0.44, RMSE = 1.37) and DLF LAI (R2 = 0.67, RMSE = 0.98). A temporal comparison among LSTMfusion and three LAI products demonstrated that the LSTMfusion model efficiently generated a time-series LAI that was smoother and more continuous than the VIIRS and MODIS LAIs. At the crop peak growth stage, the LSTMfusion LAI values were closer to the reference maps than the GLASS LAI. Furthermore, our proposed method was proved to be effective and robust in maintaining the spatio-temporal continuity of the LAI when noisy reflectance data were used as the LSTM input. These findings highlighted that the DLF method helped to enhance the quality of the original satellite products, and the LSTM model trained by the coupled satellite products can provide reliable and robust estimations of the time-series LAI.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3