Algorithms for Hyperparameter Tuning of LSTMs for Time Series Forecasting

Author:

Dhake Harshal1ORCID,Kashyap Yashwant1ORCID,Kosmopoulos Panagiotis2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

2. Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece

Abstract

The rapid growth in the use of Solar Energy for sustaining energy demand around the world requires accurate forecasts of Solar Irradiance to estimate the contribution of solar power to the power grid. Accurate forecasts for higher time horizons help to balance the power grid effectively and efficiently. Traditional forecasting techniques rely on physical weather parameters and complex mathematical models. However, these techniques are time-consuming and produce accurate results only for short forecast horizons. Deep Learning Techniques like Long Short Term Memory (LSTM) networks are employed to learn and predict complex varying time series data. However, LSTM networks are susceptible to poor performance due to improper configuration of hyperparameters. This work introduces two new algorithms for hyperparameter tuning of LSTM networks and a Fast Fourier Transform (FFT) based data decomposition technique. This work also proposes an optimised workflow for training LSTM networks based on the above techniques. The results show a significant fitness increase from 81.20% to 95.23% and a 53.42% reduction in RMSE for 90 min ahead forecast after using the optimised training workflow. The results were compared to several other techniques for forecasting solar energy for multiple forecast horizons.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3