Extracting Remotely Sensed Water Quality Parameters from Shallow Intertidal Estuaries

Author:

Shao Zhanchao,Bryan Karin R.,Lehmann Moritz K.ORCID,Pilditch Conrad A.

Abstract

Sentinel-2 imagery is potentially ideal for providing a rapid assessment of the ecological condition of estuarine water due to its high temporal and spatial resolution and coverage. However, for optically shallow waters, the problem of isolating the effect of seabed reflectance from the influence of water properties makes it difficult to use the observed surface reflectance to monitor water quality. In this study, we adopt a methodology based on Lyzenga’s model to estimate water quality properties such as the dominant wavelength and diffuse attenuation coefficient (Kd) of shallow estuarine waters. Lyzenga models the observed reflectance (R) using four parameters: total water depth (z), sea-bed reflectance (Rb), water reflectance (Rw) and Kd. If Rb is known a priori and multiple observations of R are available from different total water depths, we show that Lyzenga’s model can be used to estimate the values of the remaining two parameters, Kd and Rw. Observations of R from different water depths can either be taken from the same image at different proximal locations in the estuary (“spatial method”) or from the same pixel observed at different tidal stages (“temporal method”), both assuming homogeneous seabed and water reflectance properties. Tests in our case study estuary show that Kd and Rw can be estimated at water depths less than 6.4 m. We also show that the proximity restriction for the reflectance correction with the temporal method limits outcomes to monthly or seasonal resolution, and the correction with the spatial method performs best at a spatial resolution of 60 m. The Kd extracted from the blue band correlates well with the observed Kd for photosynthetically active radiation (PAR) (r2 = 0.66) (although the relationship is likely to be estuary-specific). The methodology provides a foundation for future work assessing rates of primary production in shallow estuaries on large scales.

Funder

Sustainable Seas National Science Challenge, Cumulative Effects project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3