A New Strategy for Forest Height Estimation Using Airborne X-Band PolInSAR Data

Author:

Xie JinweiORCID,Li Lei,Zhuang Long,Zheng Yu

Abstract

Because the penetration depth of electromagnetic waves in forests is large in the longer wavelength band, most traditional forest height estimation methods are carried out using polarimetric interferometry synthetic aperture radar (PolInSAR) data of the L or P band, and the estimation method is a three-stage method based on the random volume over ground (RVoG) model. For X-band electromagnetic waves, the penetration depth of radar waves in forests is limited, so the traditional forest height estimation method is no longer applicable. In view of the above problems, in this paper we propose a new forest height estimation strategy for airborne X-band PolInSAR data. Firstly, the sub-view interferometric SAR pairs obtained via frequency segmentation (FS) in the Doppler domain are used to extend the polarimetric interferometry coherence coefficient (PolInCC) range of the original SAR image under different polarization states, so as to obtain the accurate ground phase. For the determination of the effective volume coherence coefficient (VCC), part of the fitting line of the extended-range PolInCC distribution that is intercepted by the fixed extinction coherence coefficient curve (FECCC) of the fixed range is averaged to obtain the accurate effective VCC. Finally, the high-precision forest canopy height in the X-band is estimated using the effective VCC with the ground phase removed in the look-up table (LUT). The effectiveness of the proposed method was verified using airborne-measured data obtained in Shaanxi Province, China. The comparison was carried out using different strategies, in which we substituted one step of the process with the conventional method. The results indicated that our new strategy could reduce the root mean square error (RMSE) of the predicted canopy height vastly to 1.02 m, with a lower estimation height error of 12.86%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Synthetic Aperture Radars

2. Forest height inversion using airborne Lidar technology;Pang;J. Remote Sens.,2008

3. Multibaseline polarimetric SAR interferometry forest height inversion approaches;Lee;Proceedings of the ESA PolInSAR Workshop,2011

4. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

5. Forest-height inversion using repeat-pass spaceborne PolInSAR data;Zhen;Sci. China Earth Sci.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3