Dielectric Fluctuation and Random Motion over Ground Model (DF-RMoG): An Unsupervised Three-Stage Method of Forest Height Estimation Considering Dielectric Property Changes

Author:

Liu Chang1ORCID,Zhang Qi2,Ge Linlin1,Sepasgozar Samad M. E.3ORCID,Sheng Ziheng1ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia

2. Data Science in Earth Observation, Technical University of Munich (TUM), 85521 Ottobrunn, Germany

3. School of Built Environment, Faculty of Arts, Design & Architecture, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) based forest height estimation for ecosystem monitoring and management has been developing rapidly in recent years. Spaceborne Pol-InSAR systems with long temporal baselines of several days always lead to severe temporal decorrelation, which can cause a forest height overestimation error. However, most forest height estimation studies have not considered the change in dielectric property as a factor that may cause temporal decorrelation with a long temporal baseline. Therefore, it is necessary to propose a new method that considers dielectric fluctuations and random motions of scattering elements to compensate for the temporal decorrelation effect. The lack of ground truth for forest canopy also needs a solution. Unsupervised methods could be a solution because they do not require the use of true values of tree heights as the ground truth to calculate their estimation accuracies. This paper aims to present an unsupervised forest height estimation method called Dielectric Fluctuation and Random Motion over Ground (DF-RMoG) to improve accuracy by considering the dielectric fluctuations and random motions. Its performance is investigated using Advanced Land Observing Satellite (ALOS)-1 Pol-InSAR data acquired over a German forest site with temporal intervals of 46 and 92 days. The authors analyze the relationship between forest height and different parameters with DF-RMoG and conventional models. Compared with conventional models, the proposed DF-RMoG model significantly reduces the overestimation error due to temporal decorrelation in forest height estimation according to its lowest average forest height.

Funder

Australian Government’s CRC Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3