L-Band Synthetic Aperture Radar and Its Application for Forest Parameter Estimation, 1972 to 2024: A Review

Author:

Ye Zilin123ORCID,Long Jiangping123ORCID,Zhang Tingchen123ORCID,Lin Bingbing123,Lin Hui123

Affiliation:

1. Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China

3. Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China

Abstract

Optical remote sensing can effectively capture 2-dimensional (2D) forest information, such as woodland area and percentage forest cover. However, accurately estimating forest vertical-structure relevant parameters such as height using optical images remains challenging, which leads to low accuracy of estimating forest stocks like biomass and carbon stocks. Thus, accurately obtaining vertical structure information of forests has become a significant bottleneck in the application of optical remote sensing to forestry. Microwave remote sensing such as synthetic aperture radar (SAR) and polarimetric SAR provides the capability to penetrate forest canopies with the L-band signal, and is particularly adept at capturing the vertical structure information of forests, which is an alternative ideal remote-sensing data source to overcome the aforementioned limitation. This paper utilizes the Citexs data analysis platform, along with the CNKI and PubMed databases, to investigate the advancements of applying L-band SAR technology to forest canopy penetration and structure-parameter estimation, and provides a comprehensive review based on 58 relevant articles from 1978 to 2024 in the PubMed database. The metrics, including annual publication numbers, countries/regions from which the publications come, institutions, and first authors, with the visualization of results, were utilized to identify development trends. The paper summarizes the state of the art and effectiveness of L-band SAR in addressing the estimation of forest height, moisture, and forest stocks, and also examines the penetration depth of the L-band in forests and highlights key influencing factors. This review identifies existing limitations and suggests research directions in the future and the potential of using L-band SAR technology for forest parameter estimation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference74 articles.

1. Remote sensing in forestry: Current challenges, considerations and directions;Fassnacht;Int. J. For. Res.,2024

2. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, applications, and prospects;Xiang;IEEE Geosci. Remote Sens. Mag.,2019

3. Guo, Q., Liang, X., Li, W., Jin, S., Guan, H., Cheng, K., Su, Y., and Tao, S. (2022). LiDAR Remote Sensing of Forest Ecosystems: Applications and Prospects. New Thinking in GIScience, Springer Nature Singapore.

4. A review of forest resource monitoring technology by synthetic aperture radar;Li;J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.),2019

5. Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI;Li;Remote Sens.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3