Estimating Fuel Moisture in Grasslands Using UAV-Mounted Infrared and Visible Light Sensors

Author:

Barber Nastassia,Alvarado ErnestoORCID,Kane Van R.ORCID,Mell William E.ORCID,Moskal L. MonikaORCID

Abstract

Predicting wildfire behavior is a complex task that has historically relied on empirical models. Physics-based fire models could improve predictions and have broad applicability, but these models require more detailed inputs, including spatially explicit estimates of fuel characteristics. One of the most critical of these characteristics is fuel moisture. Obtaining moisture measurements with traditional destructive sampling techniques can be prohibitively time-consuming and extremely limited in spatial resolution. This study seeks to assess how effectively moisture in grasses can be estimated using reflectance in six wavelengths in the visible and infrared ranges. One hundred twenty 1 m-square field samples were collected in a western Washington grassland as well as overhead imagery in six wavelengths for the same area. Predictive models of vegetation moisture using existing vegetation indices and components from principal component analysis of the wavelengths were generated and compared. The best model, a linear model based on principal components and biomass, showed modest predictive power (r² = 0.45). This model performed better for the plots with both dominant grass species pooled than it did for each species individually. The presence of this correlation, especially given the limited moisture range of this study, suggests that further research using samples across the entire fire season could potentially produce effective models for estimating moisture in this type of ecosystem using unmanned aerial vehicles, even when more than one major species of grass is present. This approach would be a fast and flexible approach compared to traditional moisture measurements.

Funder

Pacific Northwest Research Station

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3