Crop stress detection from UAVs: best practices and lessons learned for exploiting sensor synergies

Author:

Chakhvashvili ErekleORCID,Machwitz Miriam,Antala Michal,Rozenstein Offer,Prikaziuk Egor,Schlerf Martin,Naethe Paul,Wan Quanxing,Komárek Jan,Klouek Tomáš,Wieneke Sebastian,Siegmann Bastian,Kefauver Shawn,Kycko Marlena,Balde Hamadou,Paz Veronica Sobejano,Jimenez-Berni Jose A.,Buddenbaum Henning,Hänchen Lorenz,Wang Na,Weinman Amit,Rastogi Anshu,Malachy Nitzan,Buchaillot Maria-Luisa,Bendig Juliane,Rascher Uwe

Abstract

Introduction Detecting and monitoring crop stress is crucial for ensuring sufficient and sustainable crop production. Recent advancements in unoccupied aerial vehicle (UAV) technology provide a promising approach to map key crop traits indicative of stress. While using single optical sensors mounted on UAVs could be sufficient to monitor crop status in a general sense, implementing multiple sensors that cover various spectral optical domains allow for a more precise characterization of the interactions between crops and biotic or abiotic stressors. Given the novelty of synergistic sensor technology for crop stress detection, standardized procedures outlining their optimal use are currently lacking. Materials and methods This study explores the key aspects of acquiring high-quality multi-sensor data, including the importance of mission planning, sensor characteristics, and ancillary data. It also details essential data pre-processing steps like atmospheric correction and highlights best practices for data fusion and quality control. Results Successful multi-sensor data acquisition depends on optimal timing, appropriate sensor calibration, and the use of ancillary data such as ground control points and weather station information. When fusing different sensor data it should be conducted at the level of physical units, with quality flags used to exclude unstable or biased measurements. The paper highlights the importance of using checklists, considering illumination conditions and conducting test flights for the detection of potential pitfalls. Conclusion Multi-sensor campaigns require careful planning not to jeopardise the success of the campaigns. This paper provides practical information on how to combine different UAV-mounted optical sensors and discuss the proven scientific practices for image data acquisition and post-processing in the context of crop stress monitoring.

Funder

Deutsche Forschungsgemeinschaft

European Cooperation in Science and Technology

Ministry of Agriculture, Viticulture and Rural Development, BioVIM projectfür Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg

Chief Scientist of the Israel Ministry of Agriculture Project

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3