STS: Spatial–Temporal–Semantic Personalized Location Recommendation

Author:

Li Wenchao,Liu Xin,Yan Chenggang,Ding Guiguang,Sun Yaoqi,Zhang JiyongORCID

Abstract

The rapidly growing location-based social network (LBSN) has become a promising platform for studying users’ mobility patterns. Many online applications can be built based on such studies, among which, recommending locations is of particular interest. Previous studies have shown the importance of spatial and temporal influences on location recommendation; however, most existing approaches build a universal spatial–temporal model for all users despite the fact that users always demonstrate heterogeneous check-in behavior patterns. In order to realize truly personalized location recommendations, we propose a Gaussian process based model for each user to systematically and non-linearly combine temporal and spatial information to predict the user’s displacement from their currently checked-in location to the next one. The locations whose distances to the user’s current checked-in location are the closest to the predicted displacement are recommended. We also propose an enhancement to take into account category information of locations for semantic-aware recommendation. A unified recommendation framework called spatial–temporal–semantic (STS) is introduced to combine displacement prediction and the semantic-aware enhancement to provide final top-N recommendation. Extensive experiments over real datasets show that the proposed STS framework significantly outperforms the state-of-the-art location recommendation models in terms of precision and mean reciprocal rank (MRR).

Funder

National Natural Science Foundation of China

National Natural Science Major Foundation of Research Instrumentation of PR China under Grants

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Region-aware neural graph collaborative filtering for personalized recommendation;International Journal of Digital Earth;2022-08-31

2. Successive Trajectory Privacy Protection with Semantics Prediction Differential Privacy;Entropy;2022-08-23

3. Location-aware neural graph collaborative filtering;International Journal of Geographical Information Science;2022-05-11

4. Releasing Differentially Private Trajectories with Optimized Data Utility;Applied Sciences;2022-02-25

5. Seasonal Relevance in E-Commerce Search;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3