Releasing Differentially Private Trajectories with Optimized Data Utility

Author:

Li BingORCID,Zhu HongORCID,Xie MeiyiORCID

Abstract

The ubiquity of GPS-enabled devices has resulted in an abundance of data about individual trajectories. Releasing trajectories enables a range of data analysis tasks, such as urban planning, but it also poses a risk in compromising individual location privacy. To tackle this issue, a number of location privacy protection algorithms are proposed. However, existing works are primarily concerned with maintaining the trajectory data geographic utility and neglect the semantic utility. Thus, many data analysis tasks relying on utility, e.g., semantic annotation, suffer from poor performance. Furthermore, the released trajectories are vulnerable to location inference attacks and de-anonymization attacks due to insufficient privacy guarantee. In this paper, to design a location privacy protection algorithm for releasing an offline trajectory dataset to potentially untrusted analyzers, we propose a utility-optimized and differentially private trajectory synthesizer (UDPT) with two novel features. First, UDPT simultaneously preserves both geographical utility and semantic utility by solving a data utility optimization problem with a genetic algorithm. Second, UDPT provides a formal and provable guarantee against privacy attacks by synthesizing obfuscated trajectories in a differentially private manner. Extensive experimental evaluations on real-world datasets demonstrate UDPT’s outperformance against state-of-the-art works in terms of data utility and privacy.

Funder

National Natural Science Foundation of China

Wuhan Science and Technology Bureau

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3