Successive Trajectory Privacy Protection with Semantics Prediction Differential Privacy

Author:

Zhang Jing,Li Yanzi,Ding Qian,Lin Liwei,Ye XiucaiORCID

Abstract

The publication of trajectory data provides critical information for various location-based services, and it is critical to publish trajectory data safely while ensuring its availability. Differential privacy is a promising privacy protection technology for publishing trajectory data securely. Most of the existing trajectory privacy protection schemes do not take into account the user’s preference for location and the influence of semantic location. Besides, differential privacy for trajectory protection still has the problem of balance between the privacy budget and service quality. In this paper, a semantics- and prediction-based differential privacy protection scheme for trajectory data is proposed. Firstly, trajectory data are transformed into a prefix tree structure to ensure that they satisfy differential privacy. Secondly, considering the influence of semantic location on trajectory, semantic sensitivity combined with location check-in frequency is used to calculate the sensitivity of each position in the trajectory. The privacy level of the position is classified by setting thresholds. Moreover, the corresponding privacy budget is allocated according to the location privacy level. Finally, a Markov chain is used to predict the attack probability of each position in the trajectory. On this basis, the allocation of the privacy budget is further adjusted and its utilization rate is improved. Thus, the problem of the balance between the privacy budget and service quality is solved. Experimental results show that the proposed scheme is able to ensure data availability while protecting data privacy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3