Study on the Raw Water Allocation and Optimization in Shenzhen City, China

Author:

Jiang Zhiqiang,Wang Chao,Liu Yi,Feng Zhongkai,Ji Changming,Zhang Hairong

Abstract

In order to allocate the raw water of the complex water supply system in Shenzhen reasonably, this paper studied the complex network relationship of this large-scale urban water supply system, which consists of 46 reservoirs, 67 waterworks, 2 external diversion water sources, 14 pumping stations and 9 gates, and described each component of the system with the concepts of point, line and plane. Using the topological analysis technology and graph theory, a generalized model of the network topological structure of the urban water allocation system was established. On this basis, combined with the water demand prediction and allocation model of waterworks, a water resources allocation model was established, aiming at satisfying the guaranteed rate of the water supply. The decomposition and coordination principle of the large-scale system and the dynamic simulation technology of the supply-demand balance were adopted to solve the model. The forward calculation mode of controlling waterworks and pumps, and the reverse calculation mode of controlling reservoirs and waterworks were designed in solving the model, and a double-layer feedback mechanism was formed, which took the reverse calculation mode as outer feedback and the reservoir water level constraint or pipeline capacity constraint as inner feedback. Through the verification calculation of the case study, it was found that the proposed model can deal well with the raw water allocation of a large-scale complex water supply system, which had an important application value and a practical significance.

Funder

Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (China Institute of Water Resources and Hydropower Research)

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3