Artificial Intelligence and Internet of Things-Based Leak Detection Method for the Water Supply Network

Author:

Li Lianxiu1ORCID,Chen Huifan1

Affiliation:

1. School of Civil Architecture Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450000, China

Abstract

The good management and safe operation of the urban water supply network are of great significance to residents’ lives and industrial production. In view of the difficulties in supervision and leakage location of the urban water supply network, based on the technology of Internet of things and artificial intelligence algorithm, a leakage detection method of the urban water supply network is proposed. First of all, low-power, low-cost terminal detection equipment and gateway monitoring equipment are developed for remote data transmission through WiFi or cellular data networks. The data organization, storage, release and control are realized by using the data center software platform. Second, the leakage location model of the water supply network is established by using remote pressure monitoring data, and the accurate location of pipe network leakage is realized. Based on ALO and PSO optimization algorithms, the water supply network in an industrial area of a city in China is solved. Finally, the performance of the two optimization algorithms is compared and analyzed. The results show that the designed intelligent monitoring system of the water supply network can monitor the pipe network well. In addition, on the problem of leakage detection, the ALO algorithm is superior to the PSO algorithm in terms of optimization ability and search efficiency. The leakage monitoring method of water supply networks proposed in this study can provide a reference for the design and management of urban water supply networks.

Funder

Scientific and Technological Key Project in Henan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3