Pollution Characteristics and Risk Assessment of Typical Antibiotics and Persistent Organic Pollutants in Reservoir Water Sources

Author:

Li Chunwei,Xu Yuan,Song WeiweiORCID

Abstract

The major task of Chinese water governance has gradually shifted away from water environment protection to water ecology remediation, and the governance of trace organic pollutants, including persistent organic pollutants and antibiotics, has attracted growing concern. The present study examined the seasonal distribution and sources of typical persistent organic pollutants and antibiotics in six representative water sources in the lower reaches of the Yangtze River, as well as their ecological risk to the environment. Six representative surface water and surface sediment samples were collected at different time intervals, i.e., December 2018, March 2019, and June 2019, and the concentrations of nineteen organochlorine pesticides (OCPs), seventeen polychlorinated biphenyls (PCBs), and eight polybrominated diphenyl ethers (PBDEs) were analyzed by GC-MS. The major findings are listed below: ① Endosulfan sulfate, Beta-endosulfan, and methoxychlor were the major persistent organic pollutants (POPs) detected in the sediments from Gaoyou Lake, Gonghu Lake, and Gehu Lake, with concentrations ranging from 9.0 to 10.6 ng/g. ② The target antibiotics in water sources were at relatively low levels. Occurrences of sulfonamide antibiotics in water and surface sediments were NF~37.4 ng·L−1 and NF~47.3 ng·g−1. Concentrations of quinolone antibiotics in the two media were NF~5.3 ng·L−1, 0.4~32.5 ng·g−1. ③ The combined toxicity of antibiotics (risk quotient, RQ) in Lake Gehu was 0.18, which was at a moderate risk level. There was no obvious ecological risk in most water sources affected by POPs. However, there were certain ecological risks in the water sources of Gaoyou Lake, Gonghu Lake, and Sanjiangying, induced by OCPs and PCBs. This study provides a scientific basis for the treatment of antibiotics and organic pollutants in reservoir water sources.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Tiegang-Shiyan Reservoir Water Quality Assurance Project

Research and Application of Key technologies for Reservoir Water Quality Assurance Project in high-density built-up area

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3