Finding Optimal Manipulator Arm Shapes to Avoid Collisions in a Static Environment

Author:

Kot TomášORCID,Bobovský ZdenkoORCID,Brandstötter Mathias,Krys VáclavORCID,Virgala IvanORCID,Novák PetrORCID

Abstract

In situations of a confined workplace with a lot of obstacles and a complicated required trajectory of the endpoint of an industrial or collaborative robot, it may be impossible to find a suitable robot and its position within the workplace to fulfill the given task. In some cases, it could be favorable to design a custom manipulator arm with an unusual kinematic structure or shapes of some of its links. This article presents a novel way of finding the optimal lengths and shapes of two crucial links of a manipulator arm, where the target lengths are as short as possible to reduce mass, and the shape in the form of a Bézier curve is chosen to avoid collisions. The chosen type of kinematic structure of the manipulator arm is fixed and is based on the most typical structure of existing industrial robots, with six degrees of freedom. Two algorithm variants were proposed; one method uses iterations to find the solution based on in-depth collision analysis, and the second method uses the particle swarm optimization algorithm. Both methods were implemented in a simulation system and verified in several testing workplaces.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3