Abstract
Spatial resolution is one of the key factors in orientation microscopy, as it determines the accuracy of grain size investigation and phase identification. We determined the spatial resolutions of on-axis and off-axis transmission Kikuchi diffraction (TKD) methods by calculating correlation coefficients using only the effective parts of on-axis and off-axis transmission Kikuchi patterns. During the calculation, we used average filtering to evaluate the spatial resolution more accurately. The spatial resolutions of both on-axis and off-axis TKD methods were determined in the same scanning electron microscope at different accelerating voltages and specimen thicknesses. The spatial resolution of the on-axis TKD was higher than that of the off-axis TKD at the same parameters. Furthermore, with an increase in accelerating voltage or a decrease in specimen thickness, the spatial resolutions of the two configurations could be significantly improved, from tens of nanometers to below 10 nm. At a voltage of 30 kV and sample thickness of 74 nm, both on-axis and off-axis TKD methods exhibited the highest resolutions of 6.2 and 9.7 nm, respectively.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献