Seismological and Engineering Demand Misfits for Evaluating Simulated Ground Motion Records

Author:

Karimzadeh Shaghayegh

Abstract

Simulated ground motions have recently gained more attention in seismology and earthquake engineering. Since different characteristics of waveforms are expected to influence alternative structural response parameters, evaluation of simulations, for key components of seismological and engineering points of view is necessary. When seismological aspect is of concern, consideration of a representative set of ground motion parameters is imperative. Besides, to test the applicability of simulations in earthquake engineering, structural demand parameters should simultaneously cover a descriptive set. Herein, simulations are evaluated through comparison of seismological against engineering misfits, individually defined in terms of log-scale misfit and goodness-of-fit score. For numerical investigations, stochastically simulated records of three earthquakes are considered: The 1992 Erzincan-Turkey, 1999 Duzce-Turkey and 2009 L’Aquila-Italy events. For misfit evaluation, seismological parameters include amplitude, duration and frequency content, while engineering parameters contain spectral acceleration, velocity and seismic input energy. Overall, the same trend between both misfits is observed. All misfits for Erzincan and Duzce located on basins are larger than those corresponding to L’Aquila mostly placed on stiff sites. The engineering misfits, particularly in terms of input energy measures, are larger than seismological misfits. In summary, the proposed misfit evaluation methodology seems useful to evaluate simulations for engineering practice.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3