Real-Time City-Scale Time-History Analysis and Its Application in Resilience-Oriented Earthquake Emergency Responses

Author:

Lu XinzhengORCID,Cheng Qingle,Xu Zhen,Xu Yongjia,Sun Chujin

Abstract

The resilience of cities has received worldwide attention. An accurate and rapid assessment of seismic damage, economic loss, and post-event repair time can provide an important reference for emergency rescue and post-earthquake recovery. Based on city-scale nonlinear time-history analysis (THA) and regional seismic loss prediction, a real-time city-scale time-history analysis method is proposed in this work. In this method, the actual ground motion records obtained from seismic stations are input into the building models of the earthquake-stricken area, and the nonlinear time-history analysis of these models is subsequently performed using a high-performance computing platform. The seismic damage to the buildings in the target region subjected to this earthquake is evaluated according to the analysis results. The economic loss and repair time of the earthquake-stricken areas are calculated using the engineering demand parameters obtained from the time-history analysis. A program named, “Real-time Earthquake Damage Assessment using City-scale Time-history analysis” (“RED-ACT” for short) was developed to automatically implement the above workflow. The method proposed in this work has been applied in many earthquake events, and provides a useful reference for scientific decision making for earthquake disaster relief, which is of great significance to enhancing the resilience of earthquake-stricken areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Rapid earthquake loss assessment after damaging earthquakes

2. Global Disaster Alert and Coordination Systemhttp://www.gdacs.org

3. Loss estimation module in the second generation software QLARM;Trendafiloski,2011

4. Damage scenarios and damage evaluation;Erdik,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3