ANN-based ground motion model for Turkey using stochastic simulation of earthquakes

Author:

Karimzadeh Shaghayegh1ORCID,Mohammadi Amirhossein1,Hussaini Sayed Mohammad Sajad1ORCID,Caicedo Daniel1,Askan Aysegul2ORCID,Lourenço Paulo B1

Affiliation:

1. ISISE, ARISE, Department of Civil Engineering, University of Minho , 4800-058, Guimarães , Portugal

2. Departments of Civil Engineering and Earthquake Studies, Middle East Technical University (METU) , 06800, Ankara , Turkey

Abstract

SUMMARY Turkey is characterized by a high level of seismic activity attributed to its complex tectonic structure. The country has a dense network to record earthquake ground motions; however, to study previous earthquakes and to account for potential future ones, ground motion simulations are required. Ground motion simulation techniques offer an alternative means of generating region-specific time-series data for locations with limited seismic networks or regions with seismic data gaps, facilitating the study of potential catastrophic earthquakes. In this research, a local ground motion model (GMM) for Turkey is developed using region-specific simulated records, thus constructing a homogeneous data set. The simulations employ the stochastic finite-fault approach and utilize validated input-model parameters in distinct regions, namely Afyon, Erzincan, Duzce, Istanbul and Van. To overcome the limitations of linear regression-based models, artificial neural network is used to establish the form of equations and coefficients. The predictive input parameters encompass fault mechanism (FM), focal depth (FD), moment magnitude (Mw), Joyner and Boore distance (RJB) and average shear wave velocity in the top 30 m (Vs30). The data set comprises 7359 records with Mw ranging between 5.0 and 7.5 and RJB ranging from 0 to 272 km. The results are presented in terms of spectral ordinates within the period range of 0.03–2.0 s, as well as peak ground acceleration and peak ground velocity. The quantification of the GMM uncertainty is achieved through the analysis of residuals, enabling insights into inter- and intra-event uncertainties. The simulation results and the effectiveness of the model are verified by comparing the predicted values of ground motion parameters with the observed values recorded during previous events in the region. The results demonstrate the efficacy of the proposed model in simulating physical phenomena.

Funder

FCT

MCTES

ERC

Foundation for Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3