Detection and Monitoring of Tunneling-Induced Riverbed Deformation Using GPS and BeiDou: A Case Study

Author:

Guo Wen,Wang Guoquan,Bao Yan,Li Pengfei,Zhang Mingju,Gong Qiuming,Li Rui,Gao Yang,Zhao Ruibin,Shen Shuilong

Abstract

Shield tunneling under rivers often requires monitoring riverbed deformations in near real-time. However, it is challenging to measure riverbed deformation with conventional survey techniques. This study introduces a comprehensive method that uses the Global Positioning System (GPS) of the USA and the BeiDou navigation satellite system (BeiDou) of China to monitor riverbed deformation during the construction of twin tunnels beneath the Hutuo River in Shijiazhuang, China. A semi-permanent GPS network with one base station outside the river and six rover stations within the river was established for conducting near real-time and long-term monitoring. The distances between the base and the rover antennas are within two kilometers. The network was continuously operating for eight months from April to December 2018. The method is comprised of three components: (1) Monitoring the stability of the base station using precise point positioning (PPP) method, a stable regional reference frame, and a seasonal ground deformation model; (2) monitoring the relative positions of rover stations using the carrier-phase double-difference (DD) positioning method in near real-time; and (3) detecting abrupt and gradual displacements at both base and rover stations using an automated change point detection algorithm. The method is able to detect abrupt positional-changes as minor as five millimeters in near real-time and gradual positional-changes at a couple of millimeters per day within a week. The method has the flexibility of concurrent processing different GPS and BeiDou data sessions (e.g., every 15 minutes, 30 minutes, one hour, one day) for diffident monitoring purposes. This study indicates that BeiDou observations can also achieve few-millimeter-accuracy for measuring displacements. Parallel processing GPS and BeiDou observations can improve the reliability of near real-time structural deformation monitoring and minimize false alerts. The method introduced in this article can be applied to other urban areas for near real-time and long-term structural health monitoring.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3