Affiliation:
1. Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education Beijing University of Technology Beijing China
3. School of Geology Engineering and Geomatics Chang’an University Xian China
4. College of Urban and Environmental Sciences Peking University Beijing China
Abstract
AbstractExpansive soils pose a significant challenge in geotechnical engineering, especially in coastal areas. While research has mainly focused on their elastic properties, this study explores the overlooked aspect of inelastic subsidence during prolonged droughts, utilizing decade‐long GPS datasets from the University of Houston Coastal Center. Our findings reveal substantial subsidence, approximately one to two dm, during the summer droughts of 2018, 2020, 2022, and 2023, due to compaction within the upper 4 m of expansive soils. Inelastic subsidence constitutes roughly 10% of the total subsidence, resulting in step‐like permanent land elevation loss over time. Notably, drought‐induced subsidence is prominent in open‐field areas with expansive soils but is minor in built‐up areas or in non‐expansive soil regions. The occurrence of inelastic subsidence challenges traditional assessments of relative sea‐level rise and coastal flooding, emphasizing the need to consider it in coastal infrastructure planning for enhanced resilience against climate uncertainties.
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献