Boundary Conditions for Simulations of Fluid Flow and Temperature Field during Ammonothermal Crystal Growth—A Machine-Learning Assisted Study of Autoclave Wall Temperature Distribution

Author:

Schimmel SaskiaORCID,Tomida Daisuke,Saito Makoto,Bao Quanxi,Ishiguro Toru,Honda Yoshio,Chichibu ShigefusaORCID,Amano Hiroshi

Abstract

Thermal boundary conditions for numerical simulations of ammonothermal GaN crystal growth are investigated. A global heat transfer model that includes the furnace and its surroundings is presented, in which fluid flow and thermal field are treated as conjugate in order to fully account for convective heat transfer. The effects of laminar and turbulent flow are analyzed, as well as those of typically simultaneously present solids inside the autoclave (nutrient, baffle, and multiple seeds). This model uses heater powers as a boundary condition. Machine learning is applied to efficiently determine the power boundary conditions needed to obtain set temperatures at specified locations. Typical thermal losses are analyzed regarding their effects on the temperature distribution inside the autoclave and within the autoclave walls. This is of relevance because autoclave wall temperatures are a convenient choice for setting boundary conditions for simulations of reduced domain size. Based on the determined outer wall temperature distribution, a simplified model containing only the autoclave is also presented. The results are compared to those observed using heater-long fixed temperatures as boundary condition. Significant deviations are found especially in the upper zone of the autoclave due to the important role of heat losses through the autoclave head.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3