Transcriptome and Metabolome Profiling Provide New Insights into Disuse Muscle Atrophy in Chicken: The Potential Role of Fast-Twitch Muscle Fibers

Author:

Yao Zipei1ORCID,Guo Lijin1,Zhang Li1,Nie Qinghua1ORCID

Affiliation:

1. National-Local Joint Engineering Research Center for Livestock Breeding & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China

Abstract

Disuse muscle atrophy is a disease caused by restricted activity, affecting human health and animal protein quality. While extensive research on its mechanism has been studied in mammals, comparatively little is known about this process in chickens, which are a significant source of protein for human consumption worldwide. Understanding the mechanisms underlying skeletal muscle atrophy in chickens is crucial for improving poultry health and productivity, as well as for developing strategies to mitigate muscle loss. In this study, two groups of chickens were subjected to limb immobilization for two and four weeks, respectively, in order to induce disuse muscle atrophy and uniformly sampled gastrocnemius muscle at the fourth week. A combined analysis of the transcriptome and metabolome was conducted to investigate the mechanisms of disuse-induced muscle atrophy. Through H&E staining and immunofluorescence, we found that, compared to slow-twitch muscle fibers, the fast-twitch muscle fibers showed a greater reduction in cross-sectional area in the immobilized leg, and were also the main driver of changes in cross-sectional area observed in the non-immobilized leg. Integrated analysis revealed that differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were mainly enriched in pathways related to energy metabolism, such as fatty acid metabolism, oxidative phosphorylation (OXPHOS), and glycolysis. These results provide important insights for further research on disuse muscle atrophy.

Funder

National Key R&D Program of China

Local Innovative and Research Teams Project of Guangdong Province

China Agriculture Research System

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3