The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study

Author:

Haładyn SzymonORCID

Abstract

This article deals with the new challenges facing modernising railways in Poland. We look at the problem of the efficiency of the power supply system (3 kV DC) used in the context of the increasing use of electric vehicles, which have a higher demand for electricity than the old type. We present and characterise the power supply system in use, pointing out its weaknesses. We consider a case study. The load of the power supply network generated by the rolling stock used in Poland was examined using a microsimulation. A real train timetable was taken into account on a fragment of one of the most important railway line sections in one of the urban agglomerations. Then the results were compared with the results of a microsimulation in which old units were replaced by new trains. These tests were carried out in several variants. We found critical points in the scheduling of railway system use. Our results indicate that it is becoming increasingly necessary to take into account the permissible load capacity of the supply network in certain traffic situations in the process of timetable construction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference61 articles.

1. Electrical Railway Transportation Systems;Brenna,2018

2. Railway Electrification Systems & Engineering;Frey,2012

3. Teoria Ruchu Pojazdów Szynowych;Madej,2012

4. Elementy Teorii Ruchu i Racjonalizacja Prowadzenia Pociągu;Kwaśnikowski,2013

5. Electrical power infrastructure for modern rolling stock with regard to the railway in Poland

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3