Experience and Perspectives of Transportation Process Control Automation for Rapid-Transit Transport of Urban Agglomerations

Author:

Sidorenko Valentina1,Kopylova Ekaterina2,Safronov Anton1,Tumanov Mihail1

Affiliation:

1. Russia University of Transport (MIIT)

2. Russian University of Transport (MIIT)

Abstract

The article analyses the technological process of transportation process organization and its control in different systems of urban agglomeration rapid-transit transport. It is presented the generalization of organization technological schemes of transportation process at the compilation of normative documents-schedules of: train traffic, rolling stock turnover, work of locomotive teams. Common features, allowing to share automation and digitization positive experience from one transport systems to another, are revealed. As a typical example for urban agglomeration rapid-transit transport, the work of Moscow Central Ring in data flow diagram notation is considered. It has been shown that the conditions of traffic planning on Moscow Central Ring are analogous to active ones on the subway ring lines. As generalizing notions, there are: mixing, non-parallelism, zoning, non-autonomy. Corresponding illustrative examples are given. Congested experience in the sphere of control automation for transportation process of rapid-transit transport of urban agglomeration is considered on the examples of railway section Nizhniy Novgorod – Uren’ as well as Kaluzhsko-Rizhskaya line of Moscow subway (electrodepots “Kaluzhskoye” and “Sviblovo”). The article describes initial data sets for to perform train traffic schedule, the purpose of its performance has been formulated, limitations, reflecting the links between objects, inside the set of given resources, and limitations, being defined by rules of passenger service, have been revealed. Analysis, pursued in the article, has shown the perspective directions of automated transport systems development on knowledge accumulated bases. As a result of the application of complex approach to the solution of automated control tasks at the use of artificial intelligence technologies and big databases usage, it’s planned to increase the efficiency usage for given resources set, train traffic schedule implementation percentage and others; to reduce information transfer error number as well as those, appeared as a result of negative human factor influence and so on.

Publisher

Petersburg State Transport University

Subject

General Medicine

Reference57 articles.

1. Баранов Л. А. Комплексное решение задач планирования и управления движением городских рельсовых транспортных средств / Л. А. Баранов, В. Г. Сидоренко, Е. П. Балакина и др. // Академик Владимир Николаевич Образцов — основоположник транспортной науки: труды Международной научно-практической конференции, посвященной 125-летию университета, Москва, 22 октября 2021 года. — М.: РУТ (МИИТ), 2021. — С. 56–64., Baranov L. A. Kompleksnoe reshenie zadach planirovaniya i upravleniya dvizheniem gorodskih rel'sovyh transportnyh sredstv / L. A. Baranov, V. G. Sidorenko, E. P. Balakina i dr. // Akademik Vladimir Nikolaevich Obrazcov — osnovopolozhnik transportnoy nauki: trudy Mezhdunarodnoy nauchno-prakticheskoy konferencii, posvyaschennoy 125-letiyu universiteta, Moskva, 22 oktyabrya 2021 goda. — M.: RUT (MIIT), 2021. — S. 56–64.

2. Вакуленко С. П. Разработка вариантов модернизации Московской монорельсовой транспортной системы / С. П. Вакуленко, Д. Ю. Роменский, В. А. Мнацаканов и др. // Метро и тоннели. — 2020. — № 4. — С. 28–36., Vakulenko S. P. Razrabotka variantov modernizacii Moskovskoy monorel'sovoy transportnoy sistemy / S. P. Vakulenko, D. Yu. Romenskiy, V. A. Mnacakanov i dr. // Metro i tonneli. — 2020. — № 4. — S. 28–36.

3. Shevlyugin M. V. Electric stock digital twin in a subway traction power system / M. V. Shevlyugin, A. A. Korolev, A. E. Golitsyna et al. // Russian Electrical Engineering. — 2019. — Vol. 90. — Iss. 9. — Pp. 647–652. — DOI: 10.3103/S1068371219090098., Shevlyugin M. V. Electric stock digital twin in a subway traction power system / M. V. Shevlyugin, A. A. Korolev, A. E. Golitsyna et al. // Russian Electrical Engineering. — 2019. — Vol. 90. — Iss. 9. — Pp. 647–652. — DOI: 10.3103/S1068371219090098.

4. Zhou W. Passenger Flow Forecasting in Metro Transfer Station Based on the Combination of Singular Spectrum Analysis and AdaBoost-Weighted Extreme Learning Machine / W. Zhou, W. Wang, D. Zhao // Sensors. — 2020. — Vol. 20. — Iss. 12. — Pp. 1–23. — DOI: 10.3390/s20123555., Zhou W. Passenger Flow Forecasting in Metro Transfer Station Based on the Combination of Singular Spectrum Analysis and AdaBoost-Weighted Extreme Learning Machine / W. Zhou, W. Wang, D. Zhao // Sensors. — 2020. — Vol. 20. — Iss. 12. — Pp. 1–23. — DOI: 10.3390/s20123555.

5. Пазойский Ю. О. Выбор оптимальных параметров системы освоения пассажиропотоков в дальнем сообщении на железнодорожном транспорте / Ю. О. Пазойский, О. Н. Панова // Автоматизация и современные технологии. — 2008. — № 1. — С. 34–39., Pazoyskiy Yu. O. Vybor optimal'nyh parametrov sistemy osvoeniya passazhiropotokov v dal'nem soobschenii na zheleznodorozhnom transporte / Yu. O. Pazoyskiy, O. N. Panova // Avtomatizaciya i sovremennye tehnologii. — 2008. — № 1. — S. 34–39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3