Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics

Author:

Kampczyk Arkadiusz1ORCID,Gamon Wojciech2ORCID,Gawlak Katarzyna2ORCID

Affiliation:

1. Department of Engineering Surveying and Civil Engineering, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

2. Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland

Abstract

Traction electricity (TE) consumption in rail transportation (rail transport) is determined by factors (determinant) related to the characteristics of railway lines and vehicles. They have an impact on driving speeds, which, in turn, affect energy consumption. The scientific research presented here combined the results of expert, direct and indirect measurement methods, including brainstorming, mind mapping, system approach, heuristics, failure mode and effect analysis. The main objective was to demonstrate the influence of the determinants of TE consumption, depending on the route (road) geometry and characteristics of the traction of electric vehicles and whole trains (catenary-supplied electric vehicles, non-autonomous electric vehicles, and network traction vehicles, especially electric locomotives and electric multiple units, electric multiple-units (EMUs)). Using a new approach, the TE consumption equation, we applied values for the movement resistances of electric locomotives during braking for a jointed railway track Mres JRT braking and continuous welded rail tracks Mres CWRt braking. The values of the movement resistances of the electric locomotives during startup on the jointed railway track Mres JRT startup and continuous welded rail tracks Mres CWRt startup were also applied. They showed a strong correlation with the existing speeds of catenary-supplied electric vehicles. The implementation of the new innovative approach is an important contribution to the development of engineering and technical sciences, in particular, the disciplines of civil engineering, surveying/geodesy, and transport.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3