Preparation and Properties of Poly (butylene adipate-co-terephthalate)/thermoplastic Hydroxypropyl Starch Composite Films Reinforced with Nano-Silica

Author:

Li Zehao12,Li Hui3,Wang Muxi1,Zhang Zhongyan124,Yang Liting1,Ma Lijun125,Liu Hong124ORCID

Affiliation:

1. School of Chemistry, South China Normal University, Guangzhou 510006, China

2. Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China

3. State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, School of Material Science and Engineer, Lanzhou University of Technology, Lanzhou 730050, China

4. School of Environment, South China Normal University, Guangzhou 510006, China

5. Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China

Abstract

The use of biodegradable plastics is gradually increasing, but its expensive cost limits promotion. In this study, poly(butylene adipate-co-terephthalate)/thermoplastic hydroxypropyl starch reinforced with nano-silica (PBAT/TPHSg-SiO2) composite films with high hydroxypropyl starch content were prepared in a two-step process. The effect of reinforced thermoplastic hydroxypropyl starch on the mechanical, thermal, processing properties, and micromorphology of the composite films was investigated. The results showed that the tensile strength of the composite films was significantly improved by the addition of nano-silica, with 35% increase in horizontal tensile strength and 21% increase in vertical tensile strength after the addition of 4 phr of nano-silica. When the content of thermoplastic hydroxypropyl starch reinforced with nano-silica (TPHSg-4SiO2) is 40%, the horizontal and vertical tensile strengths of the films are 9.82 and 12.09 MPa, respectively, and the elongation at break of the films is over 500%. Electron micrographs show that TPHSg-4SiO2 is better homogeneously dispersed in the PBAT and exhibits a bi-continuous phase structure at a TPHSg-4SiO2 content of 40%. In this study, the blowing PBAT/TPHSg-4SiO2 composite films effectively reduce the cost and still show better mechanical properties, which are suitable for packaging applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3