Preparation and properties of poly[(butylene adipate)‐co‐terephthalate]/thermoplastic hydroxypropyl starch films

Author:

Wang Muxi1,Li Zehao1,Zhao Wenbo2,Huang Zhenyu1,Liu Hong2ORCID,Ma Li‐Jun134ORCID,Yang Liting1

Affiliation:

1. School of Chemistry South China Normal University Guangzhou China

2. School of Environment South China Normal University Guangzhou China

3. Key Laboratory of Analytical Chemistry for Biomedicine South China Normal University Guangzhou China

4. Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou China

Abstract

AbstractPoly[(butylene adipate)‐co‐terephthalate] (PBAT) is currently the most widely used and versatile petroleum‐based fully biodegradable polyester, drawing extensive attention from researchers. However, the high production cost of PBAT restricts its widespread application. Currently, incorporating fillers into PBAT materials is considered the most effective approach to reduce production costs, with thermoplastic starch recognized as the optimal filler for PBAT base materials. Nevertheless, the low mechanical strength of thermoplastic starch significantly compromises the performance of PBAT base materials. In this study, thermoplastic starch with higher mechanical strength was prepared by partially substituting commonly used glycerol with a higher molecular weight sorbitol as the plasticizer. The enhanced thermoplastic starch was then used as a filler for PBAT materials, leading to the fabrication of PBAT‐based blend films with high starch content. Mechanical property tests revealed a 52.2% and 65.3% increase of tensile strength in the transverse and longitudinal directions, respectively, when sorbitol partially replaced glycerol as the plasticizer for thermoplastic starch. Scanning electron microscopy results demonstrated improved dispersion of thermoplastic starch particles in PBAT when sorbitol and glycerol were used together. Meanwhile, the thermal performance and stability of PBAT were not significantly affected by the thermoplastic starch filling. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3