Controllable Fabrication and Oil–Water Separation Properties of Polyethylene Terephthaloyl-Ethylenediamine-IPN-poly(N-Isopropylacrylamide) Microcapsules

Author:

Liu MengORCID,Zhao DanORCID,Lv Hui,Liang Yunjing,Yang Yannan,Hong Zongguo,Liu Jingxue,Dai Kang,Xiao XincaiORCID

Abstract

In this paper, we report a microcapsule embedded PNIPAN in P (TPC-EDA) shell and it can be regarded as an interpenetrating polymer network (IPN) structure, which can accelerate the penetration of oily substances at a certain temperature, and the microcapsules are highly monodisperse and dimensionally reproducible. The proposed microcapsules were fabricated in a three-step process. The first step was the optimization of the conditions for preparing oil in water emulsions by microfluidic device. In the second step, monodisperse polyethylene terephthaloyl-ethylenediamine (P(TPC-EDA)) microcapsules were prepared by interfacial polymerization. In the third step, the final microcapsules with poly(N-isopropylacrylamide) (PNIPAM)-based interpenetrating polymer network (IPN) structure in P(TPC-EDA) shells were finished by free radical polymerization. We conducted careful data analysis on the size of the emulsion prepared by microfluidic technology and used a very intuitive functional relationship to show the production characteristics of microfluidics, which is rarely seen in other literatures. The results show that when the IPN-structured system swelled for 6 h, the adsorption capacity of kerosene was the largest, which was promising for water–oil separation or extraction and separation of hydrophobic drugs. Because we used microfluidic technology, the products obtained have good monodispersity and are expected to be produced in large quantities in industry.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of South-Central University for Nationalities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3