Abstract
Due to the complexity of the composite structure, analyzing the material failure process of carbon fiber reinforced polymers (CFRP) is fairly difficult, particularly for the machining process. Peridynamic theory, a new branch of solid mechanics, is a useful tool for dealing with discontinuities. This study presents an ordinary state-based peridynamic (OSB-PD) model for unidirectional CFRP material in the cutting process. In this model, angle tolerance is used to overcome the fiber angle limitation in a classical OSB-PD laminate method, and the short-range force approach is utilized to simulate the contact of the cutting tool and workpiece. The effectiveness of the supplied models is validated by tension and cutting tests. Finally, it can be indicated that the OSB-PD model is capable of predicting machined surface damage and cutting force, based on the comparison of simulation and experimental data.
Funder
National Natural Science Foundations of China
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献