The Effect of Clearance Angle on Tool Life, Cutting Forces, Surface Roughness, and Delamination during Carbon-Fiber-Reinforced Plastic Milling

Author:

Knápek Tomáš1ORCID,Dvořáčková Štěpánka1ORCID,Váňa Martin1

Affiliation:

1. Assembly and Engineering Metrology, Department of Machining, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic

Abstract

This study aimed to investigate the effect of the clearance angle of the milling tool on wear, cutting forces, machined edge roughness, and delamination during non-contiguous milling of carbon-fiber-reinforced plastic (CFRP) composite panels with a twill weave and 90° fiber orientation. To achieve the objective of the study, it was first necessary to design suitable tools (6 mm diameter sintered carbide shank milling cutters) with a variety of clearance angles (8.4°, 12.4°, and 16.4°) and all the machinery and measuring equipment for the research to be carried out. Furthermore, measurement and evaluation methods for cutting tool wear, cutting forces, machined edge roughness, and delamination were developed. Last but not least, the results obtained during the research were summarized and evaluated. From the experiments conducted in this study, it was found that the tool clearance angle has a significant effect on tool wear, roughness of the machined surface, and delamination of the carbon fiber composite board. The tool with a clearance angle of 8.4° wore faster than the tool with a clearance angle of 16.4°. The same trend was observed for cutting force, machined surface roughness, and delamination. In this context, it was also shown that the cutting force increased as the tool wear increased, which in turn increased surface roughness and delamination. These results are of practical significance, not only in terms of the quality of the machined surface but also in terms of time, cost, and energy savings when machining CFRP composite materials.

Funder

Technical University of Liberec

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3