Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage

Author:

Kolesnikov Gennady1ORCID,Gavrilov Timmo1ORCID,Zaitseva Maria1ORCID

Affiliation:

1. Institute of Forestry, Mining and Construction Sciences, Petrozavodsk State University, Lenin pr., 33, 185910 Petrozavodsk, Russia

Abstract

An experimental study and modeling of the behavior of wood during compression along the fibers was carried out. The nonlinear analytical dependence of the load on the strain was considered. Attention was focused on the post-peak stage of deformation in order to determine the load and displacement at which the transition to the stage of plastic deformation occurs. The work was aimed at substantiating the application of the energy criterion of brittle fracture as a criterion for the transition to the stage of plastic deformation. To achieve this goal, methods of mathematical modeling and analysis of test results were used. As an upshot, a simple and practical procedure was developed to predict the transition point to the above stage of plastic deformation. The simulation results were consistent with laboratory tests of samples and fragments of structures. The practical significance of this criterion lies in its possible use as an additional tool for analyzing the condition of some wooden structures. Energy criteria, including the one mentioned above, belong to fairly universal criteria. Accordingly, the research methodology can be adapted to analyze the behavior of, for example, composites under other types of loads in further studies.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3