Astaxanthin-Loaded Pickering Emulsions Stabilized by Nanofibrillated Cellulose: Impact on Emulsion Characteristics, Digestion Behavior, and Bioaccessibility

Author:

Saechio Supaporn1,Akanitkul Ploypailin1,Thiyajai Parunya1,Jain Surangna2,Tangsuphoom Nattapol1ORCID,Suphantharika Manop3,Winuprasith Thunnalin1ORCID

Affiliation:

1. Institute of Nutrition, Mahidol University, Nakhon Pathom 73070, Thailand

2. Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, USA

3. Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Abstract

Astaxanthin (AX) is one of the major bioactives that has been found to have strong antioxidant properties. However, AX tends to degrade due to its highly unsaturated structure. To overcome this problem, a Pickering O/W emulsion using nanofibrillated cellulose (NFC) as an emulsifier was investigated. NFC was used because it is renewable, biodegradable, and nontoxic. The 10 wt% O/W emulsions with 0.05 wt% AX were prepared with different concentrations of NFC (0.3–0.7 wt%). After 30 days of storage, droplet size, ζ-potential values, viscosity, encapsulation efficiency (EE), and color were determined. The results show that more stable emulsions are formed with increasing NFC concentrations, which can be attributed to the formulation of the NFC network in the aqueous phase. Notably, the stability of the 0.7 wt% NFC-stabilized emulsion was high, indicating that NFC can improve the emulsion’s stability. Moreover, it was found that fat digestibility and AX bioaccessibility decreased with increasing NFC concentrations, which was due to the limitation of lipase accessibility. In contrast, the stability of AX increased with increasing NFC concentrations, which was due to the formation of an NFC layer that acted as a barrier and prevented the degradation of AX during in vitro digestion. Therefore, high concentrations of NFC are useful for functional foods delivering satiety instead of oil-soluble bioactives.

Funder

Development and Promotion of Science and Technology Talents Project

Institute for the Promotion of Teaching Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3