Preparation and Performance of Biodegradable Poly(butylene adipate-co-terephthalate) Composites Reinforced with Novel AgSnO2 Microparticles for Application in Food Packaging

Author:

Venkatesan Raja1ORCID,Alagumalai Krishnapandi1,Kim Seong-Cheol1

Affiliation:

1. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Biodegradable composites with antimicrobial properties were prepared with microparticles of silver stannate (AgSnO2) and poly(butylene adipate-co-terephthalate) (PBAT) and tested for applications in food packaging. The PBAT matrix was synthesized and confirmed by 1H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). Ultrasonic and coprecipitation methods were used to synthesize AgSnO2. A two-step mixing method and a solvent cast technique were utilized to fabricate the PBAT composites (different weight % of AgSnO2) for packaging foods. Attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, XRD, and scanning electron microscopy were used to investigate the formation, structure, and size of the composites. Thermogravimetric analysis and differential thermal calorimetry were used to examine the PBAT/AgSnO2 composites. The best characteristics are exhibited in 5.0 wt. % AgSnO2 loaded PBAT composite. The tensile strength, elongation at break, water vapor transmission rate, and oxygen transmission rate were 22.82 MPa, 237.00%, 125.20 g/m2/day, and 1104.62 cc/m2/day.atm, respectively. Incorporating AgSnO2 enhanced the hydrophobicity of the PBAT materials as evaluated by the water contact angle. The 5.0 wt. % AgSnO2/PBAT film shows a favorable zone of inhibition against the bacteria pathogens S. aureus and E. coli, according to an evaluation of its antimicrobial activity. The weight loss of 5% AgSnO2/PBAT film was 78.4% after eight weeks in the natural soil environments. In addition, the results of food quality studies recommend that AgSnO2/PBAT (5.0 wt. %) film had a longer food shelf life than the neat PBAT and commercial, increasing it from one to 14 days for carrot vegetables.

Funder

2020 Yeungnam University Research Grant

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3