Tuning the Selectivity of Metal Oxide Gas Sensors with Vapor Phase Deposited Ultrathin Polymer Thin Films

Author:

Schröder StefanORCID,Ababii NicolaiORCID,Brînză MihaiORCID,Magariu Nicolae,Zimoch Lukas,Bodduluri Mani Teja,Strunskus ThomasORCID,Adelung RainerORCID,Faupel FranzORCID,Lupan Oleg

Abstract

Metal oxide gas sensors are of great interest for applications ranging from lambda sensors to early hazard detection in explosive media and leakage detection due to their superior properties with regard to sensitivity and lifetime, as well as their low cost and portability. However, the influence of ambient gases on the gas response, energy consumption and selectivity still needs to be improved and they are thus the subject of intensive research. In this work, a simple approach is presented to modify and increase the selectivity of gas sensing structures with an ultrathin polymer thin film. The different gas sensing surfaces, CuO, Al2O3/CuO and TiO2 are coated with a conformal < 30 nm Poly(1,3,5,7-tetramethyl-tetravinyl cyclotetrasiloxane) (PV4D4) thin film via solvent-free initiated chemical vapor deposition (iCVD). The obtained structures demonstrate a change in selectivity from ethanol vapor to 2-propanol vapor and an increase in selectivity compared to other vapors of volatile organic compounds. In the case of TiO2 structures coated with a PV4D4 thin film, the increase in selectivity to 2-propanol vapors is observed even at relatively low operating temperatures, starting from >200 °C. The present study demonstrates possibilities for improving the properties of metal oxide gas sensors, which is very important in applications in fields such as medicine, security and food safety.

Funder

DFG—Deutsche Forschungsgemeinschaft

“SuSiBaBy”—SulfurSilicon Batteries by the EUSH and EFRE in SH

Technical University of Moldova

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3