Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications

Author:

Chen XiaohuORCID,Leishman Michelle,Bagnall Darren,Nasiri NoushinORCID

Abstract

In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3